Current understanding of tandem spinal stenosis: epidemiology, diagnosis, and surgical strategy

Qiushi Bai¹*, Yuanyi Wang²*, Jiliang Zhai¹, Jigong Wu³, Yan Zhang⁴ and Yu Zhao¹

¹Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
²Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, China
³Chinese People's Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, China
⁴Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
*(Q Bai, Y Wang contributed equally to this work)

Keywords
- tandem spinal stenosis
- diagnosis criteria
- surgery

Introduction

Spinal stenosis is characterised by a reduction in the cross-sectional area of the spinal canal that leads to upper or lower motor neuron deficits and related neurological symptoms depending on the location of the compression. Spinal stenosis can affect more than one level in any segments (1, 2, 3). Tandem spinal stenosis (TSS) refers to concomitant stenosis that affects at least two regions (4).

TSS was first reported in 1957 by Brain et al., who described a patient with cervical spinal stenosis (CSS) and lumbar spinal stenosis (LSS) (5). Subsequently, cases of seven patients with concomitant CSS and LSS were reported by Teng and Papatheodorou (6). The term ‘tandem spinal stenosis’ was first proposed by Dagi et al. to distinguish patients with concurrent cervicolumbar TSS (CLTSS) (4). In 1962, Koizumi reported a case of CSS and thoracic spinal stenosis (ThSS) (7) that broadened the scope of TSS by adding ThSS to stenotic candidate regions (8, 9). To date, TSS is defined as distinct concomitant stenosis in at least two regions of the cervical, thoracic, and lumbar spine and may present with both upper and lower motor neuron symptoms and neurogenic claudication (10, 11, 12, 13).

TSS is classified into four subtypes according to the stenotic region: cervicothoracic TSS (CTTSS), thoracolumbar TSS (TLTSS), cervico-thoraco-lumbar TSS (CTLTSS), and CLTSS (14) (Fig. 1). It presents with complicated manifestations that cause difficulties in both diagnosis and treatment. Herein, we review the current understanding...
of TSS including the subtypes with ThSS, aimed to clarify the epidemiology and diagnosis of TSS and to discuss surgical strategies for the different subtypes of TSS.

Prevalence of TSS

Many studies have attempted to determine the prevalence of TSS (Table 1). According to previous reports, the incidence of radiological and symptomatic TSS are 8–60% and 5–28%, respectively (2, 4, 12, 15, 16, 17). However, these data do not reflect the precise status. Based on studies of volunteers and unrelated patients, the incidence of CLTSS is 0.12–11% in the general population (16, 17, 18, 19, 20). However, the incidence of other subtypes was not mentioned. In anatomical studies, two research groups examined the prevalence of TSS by measuring the same collection of cadavers. The incidence of CLTSS in the cadavers ranged from 0.9 to 5.4% (21), and the incidence of CTTSS and TLTSS is 1 and 1.42%, respectively (22, 23). Limited by the cadaveric nature, despite the good consistency, the results can merely reflect TSS caused by developmental or acquired narrowing of bony structures (24). Most prevalence studies on TSS are based on patients with spinal stenosis. The radiological CLTSS incidence among patients with CSS or LSS is 32.2–84.6%, and the symptomatic CLTSS incidence was 0.88–33.3% (25, 26, 27, 28, 29, 30, 31, 32). The incidence of radiological CTTSS and TLTSS ranges from 12.2 to 70% among patients with spinal stenosis, and the incidence of radiological CTLTSS among patients with spinal stenosis is 10–25.7% (14, 33, 34).

Aetiology and potential risk factors of TSS

TSS has two main aetiologies that can lead to stenosis in combination or separately. Spondylotic changes caused by degeneration is the main cause of LSS and CSS. CLTSS is caused by degenerative spondylosis due to aging, lifestyle, and other stimuli. The other aetiology is heterotopic ossification, including ossification of the posterior longitudinal ligament (OPLL) and the ligamentum flavum (OLF), which are commonly seen in ThSS and some patients with CSS (7, 35). CTTSS, TLTSS, and CTLTSS are more likely to be caused by heterotopic ossification, which is associated with genetic abnormalities in backgrounds and metabolism (36, 37). Based on the aetiologies, we reviewed the potential risk factors of TSS, which are important to arrive at a timely diagnosis.

Developmental spinal stenosis (DSS) is defined as the reduction of the area of the spinal canal crossing at the pedicle level in multiple or all segments (1). Compared with other patients, the incidence of TSS is higher among patients with DSS (16, 38). Torg-Pavlov rate (TPR) is an index for DSS diagnosis and is the only TSS predictor with statistical significance (39, 40), with a predictive value of less than 0.75–0.78 (16, 29). Although poor reliability of TPR as a cervical anatomical measurement has been reported (41), low TPR in one region is still a predictor of co-existing stenosis in valid cases (42, 43). Thus, TPR assessment should be routinely performed for patient stratification.

Figure 1
The representative MRI of the subtypes of TSS. The whole spine MRI of a CLTSS patient shows CSS at C4-7 (A1, arrows) and LSS at L3-4 (A3, arrows); In the MRI of a CTTSS patient, extensive hypertrophy of the posterior longitudinal ligament causes CSS (B1, arrows) and ThSS (B2, arrows), the stenotic change affects C4-T5 (B1, 2); In the MRI of a TLTSS patient, T3-5 ThSS (C2, arrows) and L2-S1 LSS (C3, arrows) occurs concomitantly; A CTLTSS patient has concurrent C2-6 CSS (D1, arrows), T4-5, T10-12 ThSS (D2, arrows), and L2-S1 LSS (D3, arrows), which are caused by heterotopic ossification and degeneration changes (D1-3). CSS, cervical spinal stenosis; CLTSS, cervico-lumbar tandem spinal stenosis; CTTSS, cervico-thoracic tandem spinal stenosis; CTLTSS, cervico-thoraco-lumbar tandem spinal stenosis; LSS, lumbar spinal stenosis; TSS, tandem spinal stenosis; ThSS, thoracic spinal stenosis; TLTSS, thoraco-lumbar tandem spinal stenosis.
Table 1: Prevalence of TSS.

<table>
<thead>
<tr>
<th>Study design</th>
<th>Sample source</th>
<th>Sample composition</th>
<th>Conclusion</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS prevalence in cadavers</td>
<td>Cadaveric study</td>
<td>Cadaver specimens</td>
<td>n: 440; Sex: N/A; Age, years: N/A</td>
<td>LSS in 16.8%; CSS in 21.5%; CLTSS in 5.4%; CSS in LSS 32.4%; LSS in CSS 25.3% CLTSS in 2% and CTTSS in 1%; A cadaver with a higher number of LSS segments is more likely to have CSS at the same time, and vice versa.</td>
</tr>
<tr>
<td>Cadaveric study</td>
<td>Cadaver specimens</td>
<td>1072; M:882; F: 190</td>
<td>15 – 114*</td>
<td></td>
</tr>
<tr>
<td>CLTSS prevalence</td>
<td>Retrospective study</td>
<td>Patients receiving surgical decompression for cervical, thoracic, or lumbar stenosis</td>
<td>n: 1603; Sex: N/A; Age, years: N/A</td>
<td>TSS in 2.06%</td>
</tr>
<tr>
<td>Prospective cross-sectional study</td>
<td>Patients with symptomatic LSS</td>
<td>n: 78; M:48; F:30</td>
<td>66 (53–82)</td>
<td>Asymptomatic CSM in 84.6%; Symptomatic CSM in 16.7%; 33.3% CSM patients had symptomatic LSS</td>
</tr>
<tr>
<td>Retrospective study</td>
<td>Patients who had undergone cervical laminoplasty for CSM</td>
<td>n: 214; M:153; F:61</td>
<td>62.8 (29–85)</td>
<td>LSS in 32% (symptomatic 13%, asymptomatic 19%)</td>
</tr>
<tr>
<td>Retrospective study</td>
<td>Patients who had undergone cervical surgery for CSM</td>
<td>n: 297; M:201; F: 96</td>
<td>65.6 (27–93)</td>
<td>CLTSS in 57.9% (15% underwent a lumbar operation)</td>
</tr>
<tr>
<td>Prospective study</td>
<td>Patients who had undergone lumbar surgery for symptomatic LSS</td>
<td>n: 565; M:279; F:286</td>
<td>70.7 (32–92)</td>
<td>CLTSS in 35.8% (5% underwent a cervical operation)</td>
</tr>
<tr>
<td>Retrospective study</td>
<td>Patients with symptomatic LSS</td>
<td>n: 237; M:117; F: 120</td>
<td>68.8 (45–87)</td>
<td>CSM in 8.86%; Men have a significantly higher incidence of CSM.</td>
</tr>
<tr>
<td>Retrospective study</td>
<td>Elderly patients with symptomatic LSS</td>
<td>n: 101; M:39; F: 62</td>
<td>71 (65–86)</td>
<td>CSS in 77 (76.2%); ThSS in 30 (29.7%); CTCLSS in 26 (25.7%); There was a correlation between the symptom duration of LSS and the prevalence of both ThSS and CSS.</td>
</tr>
<tr>
<td>Retrospective study</td>
<td>Patients received surgery for symptomatic spinal stenosis</td>
<td>n: 1023; Sex: N/A</td>
<td>Age, years: N/A</td>
<td>TSS in 0.88%</td>
</tr>
<tr>
<td>Retrospective study</td>
<td>Patients received surgery for symptomatic spinal stenosis</td>
<td>n: 230; Sex: N/A</td>
<td>Age, years: N/A</td>
<td>CLTSS in 3.4%</td>
</tr>
<tr>
<td>Retrospective study</td>
<td>Patients received surgery for symptomatic spinal stenosis</td>
<td>n: 158; Sex: N/A</td>
<td>Age, years: N/A</td>
<td>CLTSS in 7.6%</td>
</tr>
<tr>
<td>CTLTSS and TSS with ThSS prevalence</td>
<td>Retrospective study</td>
<td>Patients who had undergone thoracic surgery for ThSS</td>
<td>n: 50; M:32; F:18</td>
<td>Concurrent LSS or CSS in 70%; CTLTSS in 10%</td>
</tr>
<tr>
<td>Retrospective study</td>
<td>Elderly patients with LSS</td>
<td>n: 460; M:101; F:359</td>
<td>83.3 (80–98)</td>
<td>CSS in 110 (23.9%); ThSS in 112 (24.3%); CLTSS in 26 (11.7%); CTCLSS in 56 (12.2%); CTCLSS in 56 (12.2%)</td>
</tr>
<tr>
<td>Retrospective study</td>
<td>Elderly patients with symptomatic LSS</td>
<td>n: 101; M:39; F:62</td>
<td>71 (65–86)</td>
<td>CSS in 77 (76.2%); ThSS in 30 (29.7%); CTCLSS in 26 (25.7%); There was a correlation between the symptom duration of LSS and the prevalence of both ThSS and CSS.</td>
</tr>
<tr>
<td>TSS prevalence in specific population</td>
<td>Retrospective study</td>
<td>Japanese residents</td>
<td>n: 931; M:627; F:304</td>
<td>Radiographic CLTSS in 11.0%; Radiographic CLTSS more prevalent in those with developmental canal stenosis; Symptomatic LSS in radiographic CLTSS was 18.6%; CSM in radiographic CLTSS was 9.8%; Symptomatic CLTSS in LSS was 6.1%</td>
</tr>
<tr>
<td>MRI study</td>
<td>Asymptomatic patients who have undergone cervical and lumbar MRI</td>
<td>n: 94; M:48; F:46</td>
<td>48.0 ± 13.4</td>
<td>CSM in 13.8%; LSS in 12.8%; CLTSS in 4%</td>
</tr>
<tr>
<td>Retrospective study</td>
<td>Patients diagnosed with acoustic tumor by myelography</td>
<td>n: 300; M:159; F:141</td>
<td>51 (18–76)</td>
<td>LSS in 24%; CSS in 21%; CLTSS in 8%</td>
</tr>
<tr>
<td>Retrospective study</td>
<td>Hospital admissions</td>
<td>n: 460964; M:2113</td>
<td>N/A</td>
<td>CLTSS in 0.12%; CLTSS in 1.9%</td>
</tr>
</tbody>
</table>

*Age of death.

CSM, cervical spondylotic myelopathy; CSS, cervical spinal stenosis; CLTSS, cervico-lumbar tandem spinal stenosis; CTGSS, cervico-thorac-tandem spinal stenosis; CLTSS, cervico-thoraco-lumbar tandem spinal stenosis; LSS, lumbar spinal stenosis; N/A; not available; TSS, tandem spinal stenosis; ThSS, thoracic spinal stenosis; TLTSS, thoraco-lumbar tandem spinal stenosis.
Patients with stenosis in one region are likely to develop TSS (29, 44). Several studies have shown that patients who already have CSS or LSS are likely to have stenosis in other regions (21, 30, 38, 45). The presence of CSS positively predicts LSS in 16.7% of cases, and the presence of LSS predicts CSS in 15.3% of cases (21). Additionally, the incidence of coexisting stenosis correlates with the severity and morphology of pre-existing stenosis (30, 43).

OPLL and OLF can cause extensive stenosis, leading to TSS (9). Cervical OPLL frequently extends to the upper thoracic spine and leads to CTTSS, and the incidence of CLTSS is significantly higher among patients with cervical OPLL than among non-OPLL patients (9, 27, 46, 47). OPLL and OLF often occur simultaneously. In the Japanese population, 64.6% of patients with cervical OPLL also have a coexisting OLF (36), over 50% of those with thoracic OPLL have a coexisting cervical OPLL, and 46% of individuals with thoracic OPLL also have thoracic OLF (46). Furthermore, Liang et al. showed that nearly 50% of Chinese patients with OPLL have thoracic OPLL (47). Patients with OPLL or OLF in the lumbar region have a high rate (60%) of coexisting stenosis in other regions, and the rate of concurrent stenosis could increase to 75% when patients have both OPLL and OLF in their lumbar region (47, 48). The extensive and skipping occurrence of OPLL and OLF and their close association with spinal stenosis might play a critical role and have predictive significance in the development of CTLTSS.

Table 2 The subtypes and the clinical manifestation of TSS.

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Definition</th>
<th>Clinical presentation</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTTSS</td>
<td>TSS involves CSS and ThSS</td>
<td>Neck and back pain; Neurological symptoms: muscle weakness on upper and lower extremities, radiculopathy and hypoesthesia on upper extremities, hypoesthesia on lower extremities, gait disturbance, tendon hyperreflexia or hypoesthesia on upper extremity, Hoffmann’s sign and Babinski’s sign positive; girdle feeling and sensory disturbance level on trunk.</td>
<td>CTSS is mainly caused by heterotopic ossification. Cervical and thoracic lesion is usually close to each other at the cervico-thoracic junction. The symptoms are caused by cord compression, the responsible segment needs to be determined by careful examination. ThSS is usually underdiagnosed due to its low incidence and slower progression.</td>
</tr>
<tr>
<td>CLTSS</td>
<td>TSS involves CSS and LSS</td>
<td>Neck and low back pain; Neurological symptoms: muscle weakness on upper and lower extremities, radiculopathy and hypoesthesia on upper and lower extremities, neurogenic claudication, gait disturbance, tendon hyperreflexia or hypoesthesia on upper extremity, Hoffmann’s sign on lower extremity, Babinski’s sign positive; sensory disturbance level on trunk.</td>
<td>CLTSS is the most common subtype of TSS. The manifestations caused by upper motor neuron deficit such as tendon hyperreflexia can be masked by those caused by lower motor neuron deficit. Additionally, CSS can also cause lower extremity symptoms, which may confuse and mislead clinicians to the diagnosis of LSS.</td>
</tr>
<tr>
<td>TLTSS</td>
<td>TSS involves ThSS and LSS</td>
<td>Back and low back pain; Neurological symptoms: muscle weakness on upper and lower extremities, radiculopathy and hypoesthesia on lower extremities, neurogenic claudication, tendon hyperreflexia on lower extremity, Babinski’s sign positive; girdle feeling and sensory disturbance level on trunk.</td>
<td>OLF at the lower thoracic spine combined with LSS is a common cause of TLTSS. ThSS is usually underdiagnosed due to its low incidence and slower progression.</td>
</tr>
<tr>
<td>CTLTSS</td>
<td>Concomitant occurrence of CSS, ThSS and LSS</td>
<td>Neck, back and low back pain; Serious neurological symptoms: muscle weakness on upper and lower extremities, radiculopathy and hypoesthesia on upper and lower extremities, neurogenic claudication, gait disturbance, tendon hyperreflexia or hypoesthesia on upper extremity, tendon hyperreflexia on lower extremity, Hoffmann’s sign on lower extremity, Babinski’s sign positive; girdle feeling and sensory disturbance level on trunk.</td>
<td>The most uncommon and severe TSS subtype. It is caused by defused heterotopic ossification and degeneration changes. The clinical presentation is complicated, the neural deficit can affect adjacent effector region and aggravate the symptoms. The surgical strategy should be designed on individual basis.</td>
</tr>
</tbody>
</table>

CSS, cervical spinal stenosis; CLTSS, cervico-lumbar tandem spinal stenosis; CTTSS, cervico-thoracic tandem spinal stenosis; CTLTSS, cervico-thoraco-lumbar tandem spinal stenosis; LSS, lumbar spinal stenosis; OLF, ossification of ligamentum flavum; TSS, tandem spinal stenosis; ThSS, thoracic spinal stenosis; TLTSS, thoraco-lumbar tandem spinal stenosis.
neurological examination that reflects possible diseases along the extent of the spinal column is recommended to avoid underdiagnosed concomitant stenosis (1, 20, 36, 49). Clinicians are also expected to maintain a high index of suspicion of TSS in the management of patients with spinal stenosis (19, 55, 56).

Patients with TSS may present with more severe preoperative symptoms owing to multiregional compression. The symptoms of one compression can be aggravated by neurological deficits caused by coexisting lesions, and the neurological response to single regional decompression is also lower in patients with TSS (57). Some studies used ‘double crush syndrome’ to explain the severity of TSS, in which proximal lesions, although sometimes asymptomatic, may increase susceptibility to compression at distal lesions (58, 59).

Diagnosis criteria of radiological TSS

In addition to the clinical manifestations, radiological evidence is essential to diagnose TSS. The diagnostic criteria for radiological TSS are based on the criteria for isolated spinal stenosis (60, 61, 62). The diagnostic criteria for TSS are not uniform in the literature, and this has led to variations in the reported prevalence of TSS and heterogeneity of clinical trials. Moreover, surgeons diagnose TSS using varied radiological examinations according to the routine practice in different centres and eras, including digital radiography (DR) (4), discography (63), CT (64), myelography (2, 26), and MRI (16), and this also leads to inconsistencies in the diagnostic criteria used in studies.

Previously, surgeons used DR to diagnose TSS, and most studies within this period used a diameter of <10–12 mm to define radiological TSS (15, 21, 65, 66). In myelography assessment, Tsutsumimoto et al. used dura sac narrowing >50% to diagnose LSS in radiological TSS (26). In CT, a midsagittal diameter of <12 mm was used to diagnose radiological TSS (64). With the emerging applications of MRI, a large variety of diagnostic criteria and grading systems for spinal stenosis have been proposed (Table 3). In recent studies, the spinal stenosis grading systems proposed by Kang and Lee are often combined or applied to diagnose radiological TSS, since they are proposed in similar patterns consistently (61, 62, 67, 68, 69). However, the diagnostic criteria for radiological TSS with ThSS are yet to be clarified, and a comprehensive grading system with a treatment algorithm is urgently required.

Treatment of TSS

Patients with TSS who are not well managed conservatively require surgical intervention. The operative rate of two or more regions is as low as 0.88–7.6% among patients with spinal stenosis (11, 32, 70, 71). Under the basic goal of TSS surgery, which is strategic decompression, maintenance of nerve function, and spinal stability and alignment reconstruction (72), the optimal surgical strategy for TSS

<table>
<thead>
<tr>
<th>Classification</th>
<th>Radiographic diagnosis criteria</th>
<th>Radiographic grading criteria</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSS</td>
<td>Based on CT or T2-weighted image of MRI: Dorsal-ventral diameter of the spinal canal: < 12 mm or 10 mm</td>
<td>Based on T2-weighted image of MRI: Grade 0: the absence of central canal stenosis Grade 1: nearly complete obliteration of subarachnoid space, including obliteration of the arbitrary subarachnoid space exceeding 50%, without signs of cord deformity. Grade 2: central canal stenosis with cord deformity but without spinal cord signal change. Grade 3: the presence of spinal cord signal change near the compressed level on T2-weighted images.</td>
<td>4, 61</td>
</tr>
<tr>
<td>ThSS</td>
<td>There are no quantitative diagnostic criteria, and the diagnosis is only made through clinical experience.</td>
<td>No radiographic grading system</td>
<td>N/A</td>
</tr>
<tr>
<td>LSS</td>
<td>Based on CT or T2-weighted image of MRI: 1. Antero-posterior diameter of spinal canal: relative LSS: 10–12 mm absolute LSS: <10 mm 2. Cross-sectional area of dural tube or sac: relative LSS: < 100 mm² absolute LSS: <75 mm² or 70 mm²² 3. Ligamentous interfacet distance: < 10 mm (L2 - L3) < 10 mm (L3 - L4) < 12 mm (L4 - L5) < 13 mm (L5 - S1) 4. Transverse diameter of spinal canal: < 15 mm or 16 mm</td>
<td>Criteria one (based on T2-weighted image of MRI): No or minor stenosis: there is clearly CSF visible inside the dural sac, but its distribution is inhomogeneous. Moderate stenosis: the rootlets occupy the whole of the dural sac, but they can still be individualized. Some CSF is still present giving a grainy appearance to the sac. Severe stenosis: no rootlets can be recognized, the dural sac demonstrating a homogeneous grey signal with no CSF signal visible. There is epidural fat present posteriorly. Extreme stenosis: in addition to no rootlets being recognizable there is no epidural fat posteriorly. Criteria two (Based on T2-weighted image of MRI): Grade 0: no lumbar stenosis without obliteration of anterior CSF space; Grade 1: mild stenosis with separation of all cauda equina; Grade 2: moderate stenosis with some cauda equina aggregated; Grade 3: severe stenosis with none of the cauda equina separated.</td>
<td>59, 61, 67</td>
</tr>
</tbody>
</table>

CSF, cerebrospinal fluid; CSS, cervical spinal stenosis; LSS, lumbar spinal stenosis; TSS, tandem spinal stenosis; ThSS, thoracic spinal stenosis.
is still debatable. Controversies include region selection, surgical patterns, and order.

Does asymptomatic lesions require surgery?

Although some studies have demonstrated that coexisting asymptomatic stenosis does not interfere with postoperative improvement (26, 28, 73), clinicians have observed that latent LSS does not interfere with the recovery of CSM, while asymptomatic CSS can negatively affect patients’ improvement after lumbar surgery (1, 30, 74, 75, 76). After selective surgery, some patients with TSS have incomplete recovery or develop new symptoms that might be masked preoperatively or aggravated postoperatively (12). Another consideration is that asymptomatic lesions may cause intra-operative position-related complications. In the prone position, the area of the stenotic spinal canal decreases by up to 67%, which could aggravate neural compression and decrease blood supply (77). It has been reported that some patients with radiological TSS develop myelopathic symptoms and cauda equina symptoms after long-term surgery in other regions or even after sleeping (11, 78, 79, 80, 81). Thus, the surgical strategy for TSS requires a comprehensive vision for development, as the symptoms cannot completely reflect the neurological vulnerability and deficit (34, 82). Surgeons should pay close attention to latent CSS and ThSS in patients with TSS and consider secondary decompression for those with incomplete resolution or new symptoms after the initial lumbar surgery.

Surgical pattern for CLTSS

Previous studies have demonstrated similar efficacy and risks of staged and simultaneous surgery in patients with CLTSS (27, 83). For nuances, simultaneous surgery could lead to significant short-term improvement, whereas slower recovery or deterioration has been observed during long-term follow-up (57, 69). Staged surgery could lead to better early outcomes than simultaneous surgery; however, the results of simultaneous surgeries in later follow-up were superior (70). For surgical complications, Eskander et al. found that the complication rate was higher among cases in patients with CLTSS who were above 68 years of age, estimated blood loss >400 mL, or combined operation time >150 min (83). Interestingly, Molinari et al. performed simultaneous surgery in a group of patients with TSS whose average age was 67 years, mean operative time was 159 min, and mean intraoperative blood loss was 558 mL; they reported no major complications, and all patients had a high degree of satisfaction (32), indicating a rather non-absolute boundary that influenced the complication rate. Thus, surgeons should consider intrinsic advantages when planning surgeries. Simultaneous surgery can improve operative length, blood loss, and position-related complication rate in patients with severe stenosis (12). On the other hand, staged surgery may be preferred for its ability to lower one-time invasiveness, target more symptomatic regions, and avoid unnecessary surgery by allowing time to recover (72).

These results indicate a comparable outcome between the two strategies when properly selected. In the CLTSS treatment algorithm, patients with CSS and LSS with similar severity, high motivation, high percentage of developing neurological complications in prone positioning, and good general condition are eligible for simultaneous surgery, while patients with poor status, or those who predominantly manifest with CSS and minor presentation of LSS, with corresponding radiological evidence, or vice versa, are suitable for staged surgery (72).

Surgical order of CLTSS

Most patients with CLTSS are elderly with poor general condition and unequal CSS and LSS (31, 34), and these patients are inclined to undergo staged surgery. Thus, the discussion of the surgical order has come alive.

In clinical practice, the priority resolution of cervical compression with or without myelopathy is supported (13). Cervical procedures do not only resolve typical CSS symptoms but can also improve lumbar symptoms, including radiculopathy and low back pain (84, 85, 86, 87), which decreases the necessity of subsequent lumbar surgery (26, 84). Compared with starting from the lumbar region, initial cervical surgery results in a higher complete resolution rate, lower rates of developing new symptoms and secondary surgery, and longer surgical intervals (11, 67, 72). This is because cervical decompression may induce functional recovery of the spinothalamic tract and corticospinal tract, resulting in neurological improvement (85, 88), while initial lumbar surgery may alter the pressure at other lesions, which could worsen the pressure on neural tissues and causes new symptoms (89).

Despite the improvement in lumbar symptoms after the cervical procedure, the effect of cervical surgery cannot be overclaimed. Some lumbar symptoms, such as intermittent claudication, cannot be relieved by cervical decompression (2), and most lumbar symptoms were temporarily relieved; only 14% of patients with CLTSS experience improvements in long-term follow-ups, while the rest would need to undergo secondary surgery (87). Sometimes, lumbar surgery alone provides better outcomes than cervical surgery or both procedures in patients with CLTSS who predominantly present with lumbar symptoms (15). Therefore, instead of starting from the cervical spine, several surgeons and our group have proposed individualised strategies. In the algorithm, after evaluating clinical manifestation and radiological and electrophysiological examinations, patients receive cervical surgery first if they predominantly present with
upper motor neuron signs or upper extremity symptoms, and lumbar surgery is performed initially if the patients present with lower extremity symptoms without upper motor neuron signs (1, 2, 50, 71) (Fig. 2). This strategy has resulted in excellent outcomes in several studies (15, 70, 71), and can be used to stratify patients with TSS to avoid unnecessary interventions (12).

Surgical strategy for TSS with ThSS

Due to extensive spinal cord violation in TSS with ThSS, the treatment does not share the same strategy and prognosis as CLTSS. In CT/TLTSS treatment, simultaneous and staged surgery can lead to comparable clinical outcomes (7, 90), and the strategy is largely determined by patient factors, such as general condition, location and distance of the lesion, predominant compression, and complication rate. When ThSS occurs adjacent to concurrent CSS or LSS, simultaneous surgery is more feasible by performing a single incision under one-time anaesthesia and hospitalisation. In the treatment of CT/TLSS, simultaneous surgery for adjacent lesions (lesion departing less than three levels) results in good outcomes and high cost-effectiveness (90, 91) (Fig. 2). However, safety concerns associated with simultaneous surgeries, such as deterioration, complications, and secondary surgery rate, impede its application, in addition to the adjacent type (7, 35, 90). Staged surgery is more reasonable for skipped CT/TLTSS. The principle of staged surgery is to resolve the predominant symptom first, which is evaluated via imaging, electrophysiological examinations, neurological status, and medical comorbidities, and subsequently decompress the remaining stenosis (10, 55). The prognosis of CT/TLTSS is poorer than that of CLTSS because of its severe nature, including its prolonged course, extensive cord compression, severe invasion, and dural adhesion (8, 92, 93, 94). Consequently, any intervention may induce unfavourable outcomes, and neither simultaneous nor staged surgery can decrease the complication rate (55).

Recently, treatment with CTLTSS has been reported (95). Some surgeons have applied simultaneous surgery to all lesions and reported improvement without complications (95). However, this strategy is not suitable for all patients because of its invasiveness, long surgical time, high skill dependency, and multiple technical variables, which lead to difficulty in tracing back. Staged surgery is less challenging and more acceptable to both surgeons and patients. By decompressing several adjacent lesions together in separate stages or resolving one region per stage, patients significantly improve the attenuated risk (93, 96). In the algorithm of our group, if the thoracic stenosis is adjacent to the cervical or lumbar lesion, initial cervicothoracic or thoracolumbar combined surgery

Figure 2

The treatment algorithm of the subtypes of TSS. For CLTSS, the main determinants of surgical pattern are predominant symptoms, complication rate, and general condition; while lesion distance alters the surgical pattern greatly in the other TSS subtypes with ThSS. The surgical sequence is determined by the predominant symptoms and subjective examination results. CSS, cervical spinal stenosis; CLTSS, cervico-lumbar tandem spinal stenosis; CTTSS, cervico-thoracic tandem spinal stenosis; CTLTSS, cervico-thoraco-lumbar tandem spinal stenosis; LSS, lumbar spinal stenosis; TSS, tandem spinal stenosis; ThSS, thoracic spinal stenosis; TLTSS, thoraco-lumbar tandem spinal stenosis.
should be performed to resolve the most severe lesion, and decompression of the other site should be performed after an interval of at least 3 months; if the lesion sites are three levels apart from each other, multi-staged surgery ought to be initialsed from the most myelopathic site, if it exists, or from the cervical spine (Fig. 2).

In addition to the predominant symptoms, compression location, and cord priority, non-spinal factors also determine the surgical strategy of TSS. With the exacerbation of the aging society, the elderly account for a large proportion of patients who undergo spinal surgery (97). The high surgical risk due to poor general condition, anaesthesia risk, high revision surgery rate, and complicated underlying diseases make it challenging for elderly patients to undergo surgeries. Although some studies reported similar complication rates in elderly and young patients who underwent lumbar surgeries (98), complication rates, morbidity, and mortality were significantly increased among patients >80 years of age (97,99). Some common spinal surgical complications, such as cerebrospinal fluid leakage and delayed wound healing, can cause severe consequences in elderly patients owing to their frailty (100). Thus, overall consideration is necessary for elderly patients with TSS. Underlying diseases can also alter treatment strategies. For instance, diabetes mellitus (DM) increases the risk of complications of spinal surgery. Patients with DM are also more likely to develop postoperative infection and deep venous thrombosis, which may lead to prolonged hospitalisation or even death (101). Therefore, the treatment strategy of TSS is also largely determined by non-spinal aspects, and staged surgery or selective surgery might be alternatives for TSS patients with such conditions.

Conclusions

TSS refers to concomitant stenosis in at least two regions of the spine that results in associated symptoms and signs. Clinicians should be aware of the incidence of TSS among patients with relevant aetiologies and risk factors and make a complete and timely diagnosis via comprehensive evaluations. However, the current diagnostic criteria for TSS must be unified and standardised. For treatment, both simultaneous and staged surgeries are effective strategies, and surgeons should design the optimal treatment by analysing the general condition, subtypes, predominant symptoms, cord decompression priority, lesion factors, and prognosis. The concept of TSS has evolved from stenosis that occurs only in the cervical and lumbar spine to stenotic changes that affect any level of the entire spine. In this process, the clinical perception of TSS is largely altered. Stenotic regions are no longer pathologies that accidentally occur concurrently; instead, they are related to certain mechanisms to some extent. Similarly, the treatment of TSS requires a more delicate design with the overall situation. However, among the documented studies, optimal strategies with solid evidence have not been proposed, and more high-level clinical trials are required to determine the suitable surgical pattern for TSS.

ICMJE Conflict of Interest Statement

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding statement

This work was supported by Jilin Provincial Natural Science Foundation (no. 20200201531JC) and National Natural Science Foundation of China (NO. 82072508).

Author contribution statement

All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication. Bai Q and Wang Y drafted the manuscript; Zhai J and Wu J collected the reference and data; Zhang Y extracted and visualized the figures; Zhao Y designed the study.

References

the cervical and thoracic spine. Spine 2008 33 E407–E410. (https://doi.org/10.1097/BRS.0b013e31811a1b76)

34. Kim BS, Kim J, Koh HS, Han SY, Lee DY & Kim KH. Asymptomatic cervical or thoracic lesions in elderly patients who have undergone decompressive lumbar surgery for stenosis. Asian Spine Journal 2010 4 65–70. (https://doi.org/10.4184/asj.2010.4.2.65)

54. Luo CA, Lu ML, Kailya-Perumal AK, Chen LH, Chen WJ & Niu CC. Degenerative cervical myelopathy presenting as subjective lower limb weakness could be a trap towards misdiagnosis. Scientific Reports 2020 10 21188. (https://doi.org/10.1038/s41598-020-78139-y)

98. Best NM & Sasso RC. Outpatient lumbar spine decompression in 233 patients 65 years of age or older. Spine 2007 32 1135–1139; discussion 1140. (https://doi.org/10.1097/01.brs.0000261486.51019.4a)

